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A comparison of defect energies in MgO using 
Mott-Littleton and quantum mechanical procedures 

R W Grimes?, C R A Catlow? and A M Stoneham$ 
Theoretical Physics Division, Harwell Laboratory, Didcot, Oxon OX1 1 ORA, UK 

Received 10 April 1989 

Abstract. We compare the predictions of Mott-Littleton calculations, based on empirical 
interatomic potentials, with predictions based on self-consistent solutions of the Schrodinger 
equation for embedded clusters. Simple vacancy and substitutional defects in MgO are 
modelled using both the classical Mott-Littleton and quantum mechanical methods. Par- 
ticular attention is paid to the size of the quantum mechanical cluster, the different ways that 
polarisation is taken into account and the choice of basis set. Results are presented 
for closed-shell systems only, namely V;, and Vo vacancies and for Lihg, 
Na$, ,  AIM^, Fo and C1, substitutional impurities. We find a respectable level of agreement 
between the quite distinct approaches. This both validates the classical calculations and 
indicates useful generalisations combining the two approaches. 

1. Introduction 

There has been considerable success in modelling closed-shell defects in ionic crystals 
using techniques based on the Mott-Littleton method employing shell-model inter- 
atomic potentials [l]. Yet, in such modelling, it is often necessary to make approxi- 
mations for centres in which solution of the Schrodinger equation would be desirable. 
In principle, a general approach is possible, combining a quantum treatment of an inner 
region with a shell-model description of its environment, as in the recent studies of Vail 
and co-workers [2, 31 and Harding and co-workers [4]. This is still a costly approach, 
however, and in the present paper we explore similar methods in which quantum cluster 
calculations are embedded in an array of point charges. Our aim is, by comparing 
different methods, to elucidate those features that are necessary for reliable cluster 
calculations on closed-shell defects. Conversely, we are able to show how Mott-Littleton 
calculations on defects in oxides can be underwritten by more rigorous quantum mech- 
anical methods. 

Our study concentrates on MgO, and the defect centres chosen are all closed-shell 
systems, namely the simple vacancies V i ,  and VLg, and the substitutional ions 
Libg, Nab,, AILg, FA and Clb.  Because MgO has the rock-salt structure, all the defect 
sites have octahedral symmetry (see figure 1) which is retained in the present work (thus 
we ignore the off-centring of the Lihg substitutional ion). These simple defect centres 

t Also at Department of Chemistry, University of Keele, Keele, Staffs ST5 5BG, UK. 
$ Present address: Materials Physics and Metallurgy Division, Harwell Laboratory, Didcot, Oxon 
OX11 ORA, UK. 
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Figure 1. Example of the type of point defect in MgO to be modelled. 

are both interesting in themselves and an essential starting point for the study of more 
complex defect processes in oxides [5-71 and they have been extensively studied by 
Mott-Littleton methods. The present study is the first detailed investigation using 
quantum mechanical calculations (although calculations of other defects, e.g. the Ff 
centre [ 2 , 3 ]  have been reported in recent years). 

2. Theoretical method 

In this section we review the essential features of the Mott-Littleton and quantum 
mechanical cluster methods employed in these studies. 

2.1. Mott-Littleton methods 

The classical Mott-Littleton method with Newton-Raphson minimisation (coded in the 
HADES [8] and CASCADE [9] codes) is essentially a simple technique. The crystal is 
partitioned into two regions. Region I is treated explicitly, and ions are relaxed to zero 
force. The surrounding region I1 is treated more approximately by calculating the 
polarisation due to the effective charge of the defect. An interface region IIa is included 
in which displacements are calculated using the simple Mott-Littleton procedure, but 
in which interactions with region I are calculated by explicit summation. 

In region I, short-range potentials must be specified between ions. In the present 
study we used the MgO potential parameters reported in the appendix. Note that the 
short-range potentials on ions are parametrised in such a way as to include dispersion 
terms and that special care was needed in deriving impurity-lattice potentials as 
described in the appendix. In Mott-Littleton calculations electronic polarisation effects 
are treated using the shell model [ 101. In the present study, we shall assume only oxygen 
ions are polarisable; this, we shall see, causes only small errors. 

We shall introduce two further simplifications to make the comparison between 
Mott-Littleton and cluster approaches easier. First, whilst it is normal to define short- 
range potentials between all ions in regions I and IIa, we shall only include those short- 
range interactions that are also modelled in the quantum mechanical model. Second, 
the ions of region IIa will be frozen in the present calculations. In this manner it will be 
possible to compare directly the effect of the empirical short-range potentials with 
interactions calculated quantum mechanically in situ. All the Mott-Littleton calculations 
in this study use the CASCADE code [9]. 
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Table 1. Details of point-ion cluster in GAMESS. 

Electrostatic field (eV A-') 

Iona Madelung potential (eV)b E, EY E, 

000 -47.7938 0.0000 0.0000 0.0000 
100 -47.7955 -0.0530 0.0000 0.0000 

Ion Charge' Number of ions 

100 -2.00 6 
110 +2.00 12 
111 -2.00 8 
200 +2.00 6 
210 -2.00 24 
211 +1.602564 24 
300 +0.268164 6 

a We designate the position of an ion relative to the central defect site as A B C where the 
integers A, B and C represent the number of magnesium-oxygen distances (2.106 A) away 
from the central defect in Cartesian coordinates along the main crystal axis. 

The Madelung potential at both oxygen and magnesium bulk crystal sites was calculated 
from CASCADE as being -47.7933 eV and the fields at both sites are zero. 

This case is for a magnesium-centred defect cluster. 

2.2. Quantum cluster methods 

Our approach here again employs two regions. In this case, calculations in the inner 
region use an ab initio Hartree-Fock, self-consistent-field (SCF) molecular-orbital 
approach. This technique, even when used in its single-determinantal form, is still costly 
in terms of computer time. Consequently, region I can include only the defect centre 
and a small number of lattice ions, perhaps one or two shells. This is much smaller than 
the practical limit upon region I of the Mott-Littleton method which may include 
hundreds of ions. An SCF wavefunction with a suitable basis set will include some 
representation of electronic polarisation, although the single-determinantal calculation 
will not model any correlation contributions. 

The outer region in our present quantum mechanical calculations consists of roughly 
100 point charges positioned at lattice sites in consecutive complete shells surrounding 
the inner region cluster. Each ion is modelled as a fixed point charge. The positions of 
these point charges are not adjusted during the calculation unlike the more sophisticated 
procedure employed by Vail and co-workers [2-41. These point charges model the 
dominant long-range Coulombic interactions; beyond the inner region, the short-range 
repulsive potentials have essentially relatively little effect on the defect centre. The ions 
in the outermost shell of the outer region have non-integral charges, the values being 
chosen to give the correct infinite-crystal Madelung potentials and electrostatic fields in 
the inner region, that is, on the ions within the quantum mechanical cluster. All other 
ions in the outer region assume their formal charge states. Full details of the point charge 
cluster are given in table 1. It is important to realise that the outer region ions do not 
respond at all to the introduction of a defect centre in the inner region so the outer region 
is treated quite differently from that in CASCADE, and is not equivalent to region I1 in 
the Mott-Littleton method. All quantum mechanical calculations reported in this study 
use the GAMESS code [ 111. 
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3. Definitions of energies 

In order to facilitate the comparison of Mott-Littleton and quantum cluster calculations, 
it is necessary to define carefully the terms that are used. 

3.1. Defect formation energies 

The results of calculations will be discussed using the following equation for the defect 
formation energy: 

Total energy to - - Energy to create 
form defect 

Relaxation 
unrelaxed defect i- energy. 

Thus, we first calculate the energy to form the defect in the perfect lattice, with all 
nuclear positions unrelaxed. Relaxation of nuclear positions or (in the case of Mott- 
Littleton calculations) nuclear and shell positions is then allowed. The difference in 
energy between the relaxed and unrelaxed lattice is the relaxation energy. 

Consider the creation of an unrelaxed defect centre. The ion occupying the lattice 
site which is to become the defect centre is removed to infinity. The energy required to 
form a vacancy defect is therefore given by: 

Unrelaxed vacancy Energy of Energy of Self-energy 
formation energy = defective - perfect + of displaced 

lattice lattice ion. 

In the case of the quantum mechanical cluster calculation, the energy of the perfect 
lattice refers to the total energy of the quantum mechanical cluster and to its surrounding 
point charge array before the defect has been created. If a substitutional ion is to be 
incorporated at the vacancy site, it is assumed to be brought from infinity so that the 
formation of an unrelaxed substitutional ion defect also includes the self-energy of the 
substitutional ion, since: 

Unrelaxed Energy of lattice Energy of Self-energy 
substitutional = incorporating the - perfect + of displaced 
formation energy substitutional ion lattice ion 

Self-energy 
- of substitutional 

ion. 

3.2. Self-energies of ions 

In the Mott-Littleton calculation, the self-energy of an ion is zero because the potentials 
are defined to be zero at infinite interatomic separation. In the quantum cluster cal- 
culations however, the isolated ion does have an electronic structure and hence the self- 
energy must be calculated explicitly. This is achieved by performing the same calculation 
on the ion embedded in a point-charge cluster, except that point charges are now used 
to represent all the ions surrounding the central ion. The pure Madelung term in the 
calculated total energy has been subtracted out. This correction may not be perfect, as 
the wavefunction of the ion in the point-charge cluster will differ somewhat from that in 
an appropriate quantum mechanically treated cluster, since the adjacent ions that 
generally act on the central ions’s electrons, and help to confine them to the atomic 
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Figure 2. Example of the size of quantum mechanical cluster used in an unrelaxed defect 
calculation. 

centre, are missing as the central ion is simply surrounded by point charges. Conse- 
quently, the electrons tend to spill out a little onto the surrounding point charges. 
However, this effect leads to energy terms that are very small compared with the 
total defect energy. In future, we plan to investigate this correction term by using 
pseudopotentials on the nearest-neighbour ions in the self-energy calculation in order 
to contain the charge density. 

4. Quantum cluster calculations: detailed methodology 

This section will explore various methodological aspects of the cluster calculations, in 
particular the choice of basis sets and basis set superposition error. 

4.1. Cluster size and choice of basis 

The quantum cluster calculations on unrelaxed defects were carried out with quantum 
mechanical clusters of either MgO, for the magnesium-centred defect sites or Mg,O for 
the oxygen-centred site (see figure 2). Such a small cluster size enabled the calculations 
to be repeated with a variety of basis sets. Three types of basis set were used. First, the 
simplest orbital representation STO 3G basis in which each Slater type orbital is modelled 
by a fixed sum of three Gaussian functions. Second, we use the sv 3-UG basis (split 
valence 3-21) where all the valence atomic orbitals are split from a sum of three Gaussians 
into two separate functions, with two Gaussians in one function and a single Gaussian 
in the other. The splitting increases the flexibility of the representation. Last, the most 
sophisticated basis is a triple zeta valence basis (TZV). In this, the lowest core orbitals 
are modelled by a sum of usually six Gaussians in order that they have a good functional 
shape. The valence orbitals are a set of independent Gaussians which gives the required 
flexibility. 

4.2. Unrelaxed vacancy energies 

The results for the formation energy of an unrelaxed oxygen vacancy ( V i )  calculated 
using the quantum cluster technique, for different basis sets, are compared with the 
values calculated using Mott-Littleton methodology in table 2. The important point to 
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Table 2. Formation energy of unrelaxed oxygen vacancy ( V i ) :  basis-set dependence in 
GAMESS CalCUlatiOnS". 

Basisb for Basis for 
oxygen ion magnesium ion Energy (eV) 

TZV TZV 42.064 
TZV SV3-21G 42.309 
SV6-21G SV6-21C 50.472 
SV3-21G SV3-21G 50.607 
STO 3G STO 3G 65.980 

a For reference, the Mott-Littleton calculation gives a formation energy of 41.118 eV. 
Abbreviations are explained in the text. 

Table 3. Total energies calculated from GAMESS (au) and their dependence on basis for a 
range of anions. 

Quantum mechanically 
modelled cluster size 

Defect 
Anion and (100) formation 
Mg ions Anion only energy (au) 

F- TZV 
SV3-21G 
Difference 

c1- TZV 
SV3-21G 
Difference 

02- TZV 
SV3-21c 
Difference 

1342.8957 
1342.3601 

0.5356 

1703.1695 
1700.9893 

2.1801 

1318.5328 
1318.1260 

0.4068 

156.7986 0.7424 
156.1316 0.6109 

0.6670 

516.8601 0.5299 
514.6772 0.5273 

2.1829 

132.5717 O.Ooa 
131.8600 0.00 

0.7117 

a As 02- is the lattice ion, it has no associated 'defect' formation energy. 

notice in these results is that as the quality of the basis improved from STO 3~ to TZV, the 
defect formation energy from the quantum cluster calculation decreases and approaches 
the value calculated with Mott-Littleton methodology. Thus, a basis set for oxygen of 
the quality of TZV is needed in order to calculate reliable formation energies, whilst only 
SV3-21G is required on magnesium ions. However, once this basis quality is achieved, the 
results of the two methods agree well. In general, we found that anions require a TZV 
basis but cations need only sv 3 - 2 1 ~ .  This is due to the more diffuse nature of the anion 
electron density and their high polarisability . 

4.3. Substitutional defects 

The use of a defect formation energy to indicate the quality of basis required to calculate 
reliable energies, as in table 2, can sometimes be misleading. Consider in table 3 the 
examples of the formation energy of FA and Cl;. Both TZV and sv 3-21G bases are used 
for fluorine and chlorine but for magnesium only the sv 3-IG basis is employed. It is 
apparent that the basis sets give rise to very similar formation energies for Clb but rather 
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different values for FA. We might be tempted to conclude that, although the higher- 
quality TZV basis is required in fluorine, sv 3 - ~ I G  suffices for chlorine. The result does 
indeed indicate that a TZV basis is needed on fluorine, but the converse result for chlorine 
is invalid. This can be seen by looking at the total energies for the individual chlorine 
defect clusters (ClMg, and C1 in point-charge arrays). We see a large decrease in total 
energy as the basis is improved, which shows that the better-quality basis still has a 
significant effect on the stability of the system. However, the decrease is equally large 
for both chlorine clusters, and the basis set effect cancels out in the final formation 
energy. In other words, the invariance of the defect formation energy with increasing 
basis set quality is a necessary but not sufficient condition that the lower-quality basis 
can be employed. 

Table 3 also shows that the formation energy for FA increases whereas that for V i  
decreases as the basis is improved. For the various clusters, total energies may change 
with basis set by significantly different amounts, so that their differences may lead to 
increasing or decreasing formation energies, depending on the defect under inves- 
tigation. On the other hand, the total energy of a particular cluster (e.g. ClMg, in a 
point-charge array) will always decrease with increasing basis set quality, consistent with 
the variational principle (see table 3). 

4.4 .  Basis set superposition error (BSSE) 

In table 2 we saw that as the quality of the oxygen basis was improved, the total cluster 
energies decreased. However, although TZV is indeed a relatively sophisticated basis 
set, the cluster energies ( E A )  will still not have reached their Hartree-Fock limits. 
Therefore if a new set of orbitals is added to the cluster calculation, the cluster energy 
can be lowered still further towards the Hartree-Fock limit. This effect can lead to an 
error if we wish to calculate the energy associated with the addition of an extra atom to 
a cluster when using the simple sums of cluster energies as outlined in 9 3.1.  The addition 
of the new atom to a cluster provides orbitals that can be used by the existing cluster to 
lower its own energy towards the Hartree-Fock limit. The cluster ions will also provide 
orbitals that lower the Hartree-Fock energy of the new ion. This effect is in addition to 
the ordinary interaction energy ( A E A B ) .  Thus, if EB is defined to be the energy of the 
additional ion, and E A B  the energy of the new larger cluster, we have: 

EAB - E A  - E, = A E A B  + AEA + AEB 

where AEA and AEB are the errors associated with the availability of new orbitals. These 
are known as the basis set superposition errors. 

The values of AEA and AEB can be estimated by calculating total cluster energies in 
which the basis orbitals of the additional atom are included but in which its nucleus and 
electrons are left out. The difference between cluster energies with and without the extra 
basis gives the basis set superposition errors, and these can be included in the original 
sum. This form of error correction is called the ‘function counterpoise method’ (CP) [12]. 

It has been suggested [13] that this method of correcting for the BSSE provides an 
overestimate of the correction energy (for a discussion see reference [14]). The main 
criticism is that some of the orbitals made available in the correction calculation will be 
fully occupied in the complete cluster. Therefore, as the Pauli principle will prevent the 
full use of the core orbitals from the additional atom in the total cluster calculation, they 
should not be available in the correction calculation [13]. To allow for this, the ‘virtual- 
only CP method’ [15] can be used. Here only the virtual orbitals of the additional ion’s 
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Table4. Comparison of correction energies using the virtual-only and full functional counter- 
poise methods (all energies in eV). 

Cluster Virtual-only Full 

Isolated 0 (000) -Isolated 0 (000) 1.545 33.552 
with additional 
basis from six 
virtual Mg at 
(100) sites 

Isolated Mg (000)- Isolated Mg (000) 0.481 
with additional 
basis from six 
virtual 0 at (100) 
sites 

0.483 

0, cluster with - O6 cluster with 1.040 18.653 
Mg vacancy (000) additional basis 

from a virtual 
Mg (000) 

Mg, cluster with - Mg, cluster with 0.205 0.208 
0 vacancy (000) additional basis 

from a virtual 
0 (000) 

basis are considered in the BSSE correction calculations. We have considered both the 
virtual-only and full CP methods in calculating the values of AEA and AEB and, for 
reasons outlined below, have chosen to use the virtual-only method in the present work. 

In table 4, we compare calculated values for AEA and AEB for the four different 
clusters types. The first two clusters involve a single cation or anion surrounded by the 
appropriate point-charge clusters. These were studied to examine the effect on the total 
cluster energy of the basis of the six nearest-neighbour (100) ions. The second two 
clusters, the anion and cation vacancy clusters 0, and Mg6 and their point charge arrays, 
were studied to determine the effect of the basis from the displaced (000) central ions. 

Consider first the effect of an additional basis at the central vacancy site (third and 
fourth pairs of values in table 4). In the case of the oxygen-vacancy-centred cluster there 
is little change in energy between virtual-only and full calculations. For the magnesium- 
vacancy-centred cluster, the full counterpoise calculation gives rise to a much larger BSSE 
than does the virtual-only calculation. Which ever method is used, the energy gained by 
the 0, cluster is much greater than that gained by the Mg, cluster. This is because the 
02- ions are much more diffuse than the Mg2+ ions and are therefore better able to make 
use of the additional virtual basis to lower the energy of their diffuse orbitals. This 
feature is particularly marked for the full counterpoise calculation as there are more 
basis functions available. 

The same effects are observed again in the BSSE calculation on the single (000) ions. 
The Mg2+(000) ion gains little energy from a virtual O6 set whereas the 02-(000) ion 
gains much more energy from the Mg, basis. It is also found that for the single 02- ion, 
a significant change in energy is apparent between the virtual-only and full calculations. 
Orbital analysis shows that this occurs because in the full calculations the electrons in 
the diffuse 02- orbitals are being delocalised over the Mg( 100) core orbitals centred on 
an attractive 2+ point-ion site. This situation is unphysical and gives rise to a greatly 
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Table 5. Basis-set superposition error (BSSE) correction by the virtual-only functional 
counterpoise method for GAMESS unrelaxed defect formation energies (all energies in eV). 

~~ ~ 

Uncorrected defect Values corrected BSSE 
formation energies for BSSE energies 

VLg 36.688 35.167 -1.521 
Vb’ 42.309 40.558 -1.751 
Libg 17.670 17.564 -0.106 
Nab, 20.086 20.274 0.188 
AIbg -23.129 -23.201 -0.072 
F;, 20.203 18.872 -1.331 
a b  25.719 26.663 0.944 

Table 6. Results for ‘unrelaxed’ defect formation energies with adjustments to the CASCADE 
results to account for the effects within the quantum clustera. 
(All energies in eV). 

~ 

Quantum 
cluster Mott-Littleton 
method with allowing 
unrelaxed (100) oxygen 
nuclear Mott-Littleton ion shell 
positions unrelaxed relaxation 

VMg 35.167 40.765 30.865 
V6’ 40.558 40.765 40.765 
Lihg 17.564 17.540 14.598 
Nab, 20.274 22.964 19.053 

F;, 18.873 19.117 19.117 
a;, 26.663 25.655 25.655 

Al,, -23.201 -23.345 -23 315 

a Basis set is TZV on oxygen, fluorine and chlorine; s v 3 - z ~  on magnesium, lithium, sodium 
and aluminium. 

exaggerated BSSE. The isolated Mg2+ ion on the other hand has no diffuse electrons that 
can be delocalised onto the core 02- basis. Values of unrelaxed defect energies corrected 
for virtual-only basis set superposition errors are presented in table 5. 

5. Comparison of methods: cluster size and relaxation effects 

5.1. Unrelaxed defect energies 

We consider first the results for the unrelaxed defect formation energies starting with 
the first two columns of table 6. These give results obtained using the two methods 
entirely without ionic displacement effects. The results show that the values for the 
oxygen vacancy defect V i ,  agree well in both methods, whereas agreement for the 
magnesium vacancy defect Vhg is less satisfactory. 

The discrepancy arises from the fact that the quantum mechanical approach includes 
electronic polarisation: even though the nuclear positions in the quantum cluster cal- 



7376 R W Grimes et a1 

culation remain fixed, the electrons in the quantum mechanical cluster polarise in 
response to the charge of the defect. In the case of VLg, the defect centre is surrounded 
by six oxygen ions (see figure 2) which are polarisable. In the case of Vd ,  the quantum 
cluster incorporates six magnesium ions, for which polarisation is expected to be very 
small. Thus, the formation energies for VLg using the quantum cluster method should 
be smaller than with the Mott-Littleton technique as it includes electronic polarisation 
of the (100) oxygen ions, whereas this component will be absent for V i .  

To confirm this, relaxation of the shell position only was allowed on the (100) oxygen 
ions in a Mott-Littleton calculation (that is for the magnesium site defects), but the 
core positions were still held fixed. There is thus electronic polarisation but no ionic 
displacement. The results of these calculations are shown in the third column of table 6, 
and comparison of values for Vb, suggests that the quantum cluster method models 
approximately 3/5 of the shell-model polarisation energy. Variations from this figure 
found in the case of the substitutional ion energies, particularly for Lib,, are thought to 
be due to problems with the modelling of the lithium-oxygen interaction. However, as 
will be discussed later, trends in energies between the different substitutional species 
are modelled well, so that we believe the empiricised potentials are usually quite well 
matched with the quantum calculations. It is important to remember that with large 
core-shell displacements, as are being modelled here, the harmonic approximation 
employed by the Mott-Littleton method will overestimate the (100) oxygen ion shell 
contribution to the defect formation energy. Conversely, the quantum cluster method 
will underestimate it due to insufficient flexibility of the basis set and the neglect of 
correlation terms by the Hartree-Fock method. The basis set flexibility problem can be 
partially solved by increasing the number of ions in the quantum cluster [16]. The true 
value will lie somewhere between these values. 

5.2. Relaxation and ionic polarisation 

The next stage in the defect calculations is to consider nuclear relaxations. The simplest 
relaxation concerns the nearest-neighbour (100) ions of the defect as depicted in figure 
2. Unfortunately, if we attempt to relax the quantum mechanically treated ions in a 
quantum cluster calculation, the ions relax to an unphysical extent as shown in figure 3 
for VL, because of the lack of a short-range repulsion potential between the ions and 
the point charges. In order to investigate (100) ion relaxations using quantum cluster 
method, one must also treat the (200) ions quantum mechanically, and we must use the 
larger cluster shown in figure 4. This leads to another problem because, as the larger 
cluster means calculations now involve a larger number of orbitals, so the quality of basis 
set has to be restricted because of practical computational limits. 

In fact, the most complex basis set that can be used in practice on any ion is the sv 3- 
21G set, previously deemed unsuitable for anions when calculating formation energies. 
Fortunately this limited basis has been found to give reliable results for relaxation 
calculations. Calculations involving relatively small displacements of ions already con- 
tained in a quantum mechanical cluster seem less dependent on basis set than do 
calculations involving the addition or removal of complete ions from the cluster. This is 
illustrated in figure 5 where relaxations of magnesium (100) ions around a Clb defect 
are presented using both TZV and s v 3 - 2 1 ~  basis sets on the chloride ion. We can see that 
the equilibrium relaxations at the minima in the curves, indicated by the two arrows, are 
very close. In fact the minima differ by only 0.004 A in displacement and a mere 0.32 eV 
in relaxation energy. This energy difference is remarkably small when it is considered 
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Figure 3. Relaxation of nearest-neighbour (100) ions using the two quantum mechanical 
cluster sizes. Total energy from G A M E S :  0, using small quantum mechanical cluster; X , 
using large quantum mechanical cluster. 
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Figure 4. Example of the larger quantum mechanical cluster used to determine the extent of 
(100) ion relaxation. 

that, if the energy scales were not adjusted to make the curves coincide, the curves 
themselves would be separated by nearly 60 eV. 

The reason for the large difference in total energies derives from the better rep- 
resentation of the chlorine core orbitals by the TZV basis; the sv3-21G basis employs only 
three Gaussians to describe core orbitals whilst the TZV basis uses six. Although the core 
orbitals make a large difference to the total cluster energy, they are essentially non- 
bonding and their superior description by the TZV basis plays no role in deciding the 
equilibrium geometry. Relaxation calculations using the quantum cluster method there- 
fore employ the sv 3 - ~ I G  basis set and the large cluster type as in the example shown in 
figure 4. Using this method, the quantum cluster technique yields physically realistic 
results, in fair agreement with Mott-Littleton results (see figure 3 and table 7 ) .  
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Figure 5. Relaxation of nearest-neighbour (100) ions around a C1, defect employing both 
TZV (0) and ~ ~ 3 . 2 1 ~  ( X)  basis sets on the chlorine ion within the quantum mechanical cluster 
of C1 Mg606. 

Once again the Mott-Littleton calculations must be modified slightly so that short- 
range interactions are computed between the now larger number of ions included in the 
quantum cluster region I. The results of such calculations are given in table 7. Those 
labelled CASCADE (A) are calculated excluding the effect of electronic polarisation, 

Table 7. Results of nearest-neighbour relaxations: CASCADE (B) results include appropriate 
shell relaxations; CASCADE (A) do not. 

Magnesium site defects Oxygen site defects 

(100) ion 
Relaxation relaxation 
energy distance 
(ev)  ( lo2 nm) 

(100) ion 
Relaxaion relaxation 
energy distance 
(ev) (IO2 nm) 

Mgb, GAMESS 
CASCADE (A) 
CASCADE (B) 

vL, GAMESS 
CASCADE (A) 
CASCADE (B) 

Libg GAMESS 
CASCADE (A) 
CASCADE (B) 

Nab, GAMESS 
CASCADE (A) 
CASCADE (B) 

AILg GAMESS 
CASCADE (A) 
CASCADE (B) 

0.027 
0.022 
0.013 

3.041 
6.022 
0.913 

0.763 
0.863 
0.061 

2.075 
2.336 
0.496 

1.185 
3.286 
0.946 

0.17 Ox, 
-0.04 
-0.04 

2.04 V, 

1.09 FA 

2.23 
1.36 

0.88 
0.35 

1.62 Clb 
1.36 
0.95 

-1.31 
-1.66 
-1.24 

GAMESS 
CASCADE (A) 
CASCADE (B) 

GAMESS 
CASCADE, (A) 
CASCADE (B) 

GAMESS 
CASCADE (A) 
CASCADE (B) 

GAMESS 
CASCADE (A) 
CASCADE (B) 

0.015 
0.000 
0.000 

6.030 
6.053 
6.162 

1.080 
1.334 
1.348 

4.120 
3.931 
3.971 

0.09 
0.00 
0.00 

2.08 
2.21 
2.23 

1.02 
1.07 
1.09 

1.51 
1.62 
1.66 
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whilst those marked CASCADE (B) include shell relaxation. Of course, the larger cluster 
means that polarisation effects are now apparent for defects centred at both lattice sites. 
However, as the polarisable oxygen ions are much further from the defect site for the 
oxygen-centred defects, polarisation effects are much smaller for these defects. Hence 
the difference between CASCADE (A) and (B) values are small for the oxygen-centred 
V?, Fb and Clb, but much larger for the magnesium-centred Vb,, Lib,, Nab, and 

When calculating Mott-Littleton relaxation energies that include electronic polar- 
isation, it is important to allow electronic polarisation on both the initial unrelaxed 
geometry and the final relaxed configuration as is the case in the CASCADE (B) results. 
When modelling the equivalent situation as the larger quantum mechanically treated 
cluster, this is the difference between the total energies of two clusters. The first cluster 
represents the starting point and has the (100) nuclear positions fixed but the (100) shells 
(for magnesium-centred defects) or (200) shells (for oxygen-centred defects) relaxed. 
The second cluster represents the relaxed geometry and has both the (100) nuclear and 
the (100) shell or (200) shells relaxed. We should note that for magnesium-centred 
defects the effect of shell relaxation is greater for the first cluster, where no nuclear 
relaxation is allowed, than for the second cluster, where both modes of relaxation 
are allowed and therefore complement each other. It follows that relaxation energies 
calculated with the inclusion of these polarisation effects (B) are lower than those where 
this effect is ignored and only nuclear relaxation is considered, that is cases (A). For 
oxygen-centred defects, shell polarisation is very slightly greater in the relaxed con- 
figurations so that CASCADE (A) results are a little lower than CASCADE (B) values (see 
table 7). 

AlMg. 

5.3. Trends with species 

We can usefully compare trends from species to species as well as the numerical values 
of energies in assuming the Mott-Littleton and quantum approaches. From table 6 we 
see that both methods predict that the formation energy of Lib, is smaller than for 
Nab,; similarly, that for FA is smaller than for Cl;. Such results would be expected on 
the basis of ionic radius arguments [17]. It is gratifying that both models exhibit such 
ionic radius effects so readily. 

The same size effect should also be seen in the calculated relaxation energies. Indeed, 
in table 7 it is seen that the Nah, defect causes much larger relaxation of the 100 ions 
than does Lib,: this being a direct result of the lattice accommodating the oversized Na' 
ion. Again, Clo causes greater relaxation than FA, 

5.4. Discrepancies between quantum and classical approaches 

Discrepancies between values calculated by the two methods may be due to a number 
of factors. We consider two points here. First, the central cluster embedded in point 
charges may not be in equilibrium, and the equilibrium interatomic spacings will nor- 
mally differ slightly between the classical and quantum cases. Second, the two 
approaches differ in the way electronic polarisation is handled. We find that neither 
effect is substantial here. The starting unrelaxed geometry for the quantum mechanical 
cluster constrains the Mg-0 distances to be 2.106 A, the same as in the bulk oxide. Thus, 
the perfect lattice geometry for the quantum cluster calculations (that is, Mg607 for 
OX, and Mg706 for Mghg, both in point-charge arrays) will not be precisely in equi- 



7380 R W Grimes et a1 

librium, for there are no short-range forces acting on the quantum cluster from the outer 
point charges. This effect has been investigated by allowing (100) relaxation of the 
defect-free quantum clusters, Mg& and 0 6 .  It can be seen from table 7 that the relax- 
ation of these clusters to an equilibrium geometry has a rather small, but not entirely 
negligible, effect. Relaxation energies might therefore be adjusted accordingly, though 
we have not carried this out in the present work. The equivalent perfect lattice cal- 
culations were carried out using the Mott-Littleton method. It was found that, with the 
restriction of short-range interaction to region I ions, Mott-Littleton calculations also 
gave a very small relaxation energy for the magnesium-centred cluster. However, the 
direction of the relaxation was towards the central ion instead of away from it as in the 
quantum cluster results. 

This points to a more subtle difference between the approaches. The reason is that 
at these oxygen-oxygen separations, the short-range oxygen-oxygen potential is slightly 
attractive. This is because this empirical potential is dominated by the ( l / r 6 )  term (see 
the appendix) which is modelling correlation effects. As mentioned earlier, in the present 
form, the Hartree-Fock approach does not model correlation effects and so omits any 
such attractive term. Clearly one might model correlation by carrying out a configuration 
interaction (CI) calculation on the quantum cluster. This would be extremely costly in 
computer time and is ignored here as the difference effects are so small. Special attention 
is needed only in cases for which there is reason to expect the effect might be large. 

These aspects are still less important for the oxygen-centred perfect lattice where no 
relaxation was observed for the CASCADE calculation. This is partly because the Mott- 
Littleton calculation assumes a zero magnesium-magnesium short-range potential and 
also because the (100) magnesium-(OZO) oxygen separations are so large that their non- 
Coulombic interactions too are also negligible. The quantum cluster calculation also 
gives a very small relaxation in the equivalent cluster. Overall therefore, the lack of 
exact equilibrium in the quantum cluster has no significant consequences. 

A second possible reason for discrepancies results from the very different ways in 
which electronic polarisation is treated in the two approaches. In particular we might 
expect that the quantum cluster calculation would underestimate polarisation because 
of insufficient flexibility in the basis set. This would be particularly pronounced for the 
relaxation calculations which use only the less-flexible sv 3-ZIG basis for the oxygen ions. 
If so, then the magnesium site defects Vhg, Libg and Nah, (table 7) should give a larger 
energy from electronic polarisation using the classical Mott-Littleton code than using 
the quantum GAMESS code. The deficit will be made up from ionic polarisation. Hence 
the polarisation correction will lead to Mott-Littleton ionic displacement energies 
(CASCADE (B)) smaller than quantum cluster results (see again table 7). Moreover, since 
polarisation energies are quadratic in the net charge, this difference will be greater for 
the higher-charged defect Vh,. In the same way, if electronic polarisation effects are 
switched off in the Mott-Littleton calculations, the magnesium-site defects will exhibit 
relaxation energies (CASCADE (A)) that are greater than those calculated using the 
quantum cluster technique, as the Mott-Littleton ionic displacements are now respon- 
sible for all the relaxation energy, whereas a portion of this energy is taken up in the 
quantum cluster calculation by electronic polarisation in the unrelaxed configuration. 
Our results for the Vhg defect suggest that the sv 3 - 2 1 ~  basis will yield about one-half of 
the electronic polarisation energy that is predicted by Mott-Littleton methodology, 
whereas the more flexible TZV basis models about three-fifths of this energy. 

For the oxygen-site defects, as electronic polarisation takes place only on the (200) 
ions, and as these polarisable ions are twice as far away from the defect site as their 



Comparison of defect energies in MgO 7381 

Table 8. Mott-Littleton results for different relaxation modes on the defect VLg and their 
relationship to the continuum model. 

Continuum 
CASCADE model 
relaxation energy relaxation energy 
(ev)  (ev)  

Relaxation of all cores and shells 16.738 12.279 

Difference 8.363 8.683 
- Relaxation of (100) cores and shells 8.375 

Relaxation of all shells and no cores 11.946 
Relaxation of (100) shells and no cores 6.452 
Difference 5.494 

9.116 

5.263 
- 

equivalents were for the magnesium-site defects, polarisation discrepancies are not 
nearly so pronounced. 

5.5. Longer-range relaxations 
The relaxation of the (100) ions alone will certainly not describe the complete relaxation 
around these defects. However, this nearest-neighbour relaxation mode is often the 
only one open to direct investigation due to the limited size of usable quantum cluster. 
How much of the total lattice relaxation energy can this mode be expected to account 
for? The answer lies in the Mott-Littleton results shown in table 8. Here we compare 
the relaxation energy for (100) core and shell relaxation with the energy gained if all ions 
(core and shells) are allowed to relax. The (100) relaxation yields almost exactly one- 
half of the total relaxation energy. 

A similar result is obtained if the effect of shell relaxation only is considered. That 
is, the nearest-neighbour shell relaxation will account for one-half of the total available 
shell relaxation (see table 8). By considering the difference between the (100) nearest- 
neighbour-only relaxation mode and that where all appropriate centres are relaxed, we 
calculate the relaxation energy associated with ions outside a region or cavity that 
includes the defect centre and nearest-neighbour ions. This is shown in table 8. 

It is of interest in the present context to consider an approximation to relaxation 
energies associated with cavities of different sizes using a simple dielectric continuum 
model [MI. In this, the relaxation energy E(R)  around a cavity of radius R is given by 

E(R)  = (e2/2R)(1 - 1 / ~ )  

where e is the effective charge of the defect site and E is either the optical dielectric 
constant E, if we are concerned solely with shell relaxation effects, or it is the static 
dielectric constant if both core and shell relaxation are being modelled. The value of 
R will be the nearest-neighbour distance a. if all ions apart from the defect centre are 
outside the cavity; it will be q 2 a o  if both core and shells are relaxed outside a cavity that 
includes the defect centre and nearest-neighbour ions; and it will be q 3 a o  if only shells 
are relaxed outside the nearest-neighbour and central defect cavity. This latter value of 
R is larger as the second-nearest-neighbour ions are cations and are therefore not 
considered to be polarisable. 

From table 8 we see that this continuum model is modestly successful at describing 
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Table 9. Potential parameters. 

Ion A P C 

O(2-) .. . O(2-y 

O(2-) . , CI(l-)C 
0 ( 2 - )  . . F(l-)b 

Mg(2t . . . F(l-)b 
Mg(2t . , . C1(l-)d 
Mg(2t . . . 0 (2 - )  

Li(l+). . . 0(2-) 

Na(l+) . . . 0 ( 2 - )  

A1(3+). . . 0 (2 - )  

22764.3 
1440.21 
962.95 

2902.29 
5171.38 
740.7e 

1275.20' 
292.3" 

2515.37' 
611.1" 

1096.8F 
821.1e 

1385.13' 

0.1490 
0.3027 
0.24917 
0.23668 
0.2578 
0.3478 
0.3012 
0.3472 
0.2408 
0.3535 
0.3016 
0.3449 
0.3009 

20.37 
22.468 
30.054 

1.866 
0.00 
0.00 
0.00 
0.00 

25.127 
0.00 
0.00 
0.00 
0.00 

a Catlow 1974 (reference [22]). 
Stoneham 1981 (reference [23]). 
Empiricised potential using Lewis electron gas potential (reference [14]) and appropriate 

empirical potential from Sangster and Stoneham (reference [24]). 
Empiricised electron gas potential to the Mg(2+) . . . 0(2-). 

e Lewis electron gas potential (reference [20]). 
Potential due to Sangster and Stoneham (reference [24]). 

the total relaxation energies ( R  = a,,) for both 'shell-only' and 'shell + core' relaxation 
types. However, the model gives excellent agreement with those energies calculated by 
CASCADE for the relaxations beyond the cavity size which includes nearest-neighbour 
ions. 

A large energy value calculated by the Mott-Littleton method when (100) nearest- 
neighbour ions are included may be expected as there will be a large core-shell dis- 
placement involved and this might be overestimated by our harmonic approximation as 
mentioned in Q 5.1. 

Table 10. The effect of using empirical and electron gas potentials on defect formation 
energies (eV). 

Defect formation 

relaxation of cores 
Defect formation energy after 
energy with unrelaxed 
coordinates (eV) and shells (eV) 

~ 

Vbg Electron gas 

Lib, Electron gas 
Empiricked 

Nah, Electron gas 
Empiricised 

AI,, Electron gas 
Empiricised 

Empirical 
37.184 
40.704 

17.430 
17.323 

23.066 
22.957 

-23.338 
-23.341 

21.808 
24.295 

13.782 
13.650 

18.112 
18.002 

-29.015 
-29.163 
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If it is only practical to relax first neighbours in a cluster calculation, can one use 
results from the classical approach to improve the predictions? In previous studies [19], 
relaxed coordinates from CASCADE were employed within the quantum cluster method 
to try to interface the two methods and to assess the legitimacy of this type of approach. 
However, there is a problem because of the way long-range Coulombic interactions are 
included and the limitations of the point-charge cluster: the only lattice sites that 
experience the correct electrostatic field expected from an infinite lattice simulation are 
those of the inner region. Therefore, the movement of any outer-region ions would lead 
to a contribution to the cluster relaxation energy due to the incorrect electrostatic 
field on these ions. Long-range relaxation energies calculated by the two methods 
are therefore not strictly comparable. In fact, to model long-range relaxations using 
quantum clusters, short-range repulsive potentials must be added to the point charges 
and a continuum correction must be employed to give sound Madelung potentials at ion 
sites. In short, a consistent interface between the two methods is essential. This approach 
is being developed at present within the ICECAP code [2,4]. 

6. Conclusion 

We have made a systematic comparison of classical Mott-Littleton and quantum mech- 
anical Hartree-Fock methods for point defects in oxides. Our results show first that the 
quantum results do give support to the classical approach and second that this consistency 
enables us to extend the value and range of properly done calculations on relatively 
small clusters. In addition, we have studied the size of quantum cluster needed to obtain 
reliable results and the quality of the basis sets that must be used in such calculations. 
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Appendix. Short-range potential parameters for impurities 

The short-range potentials used in the Mott-Littleton calculation are all of a Buckingham 
form, that is 

Vij (r )  = A ,  exp( - r i j / p q )  - Cij /r$ 

where rij is the internuclear distance between centres i andj.  The choice of the potential 
parameters is obviously of critical importance. Generally, potential parameters are 
fitted to avariety of structural information, and indeed this has been done to yield reliable 
Mg-0 and 0-0 potentials for the MgO structure. However, structural information does 
not exist for the dopant ions; in MgO we must use non-empirical methods (in particular, 
electron gas methods) to determine a set of consistent potential parameters for all the 
necessary ion interactions [20]. 

Previous experience has indicated that poor results will be obtained if potentials from 
electron gas methods are used indiscriminately with potentials derived from empirical 
structure fitting [21]. However, although the absolute values of the electron gas poten- 
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tials may be inconsistent with empirical potentials, the differences between the potentials 
are expected to be reliable. Hence if, for a reference interaction, the difference in energy 
AV between the electron gas potentials (V,",) and (V&) is determined for a range of 
interatomic separations, then this is added to values obtained for the reference inter- 
action (V&,J. These new values are then fitted to the original potential form to yield 
modified (or rather empiricised) electron gas potentials (V& ): 

In this way, we are able to make use of the more reliable empirical short-range 
potentials whilst maintaining the consistency of electron gas potentials. The values of 
parameters thus obtained are given in table 9. Table 10 shows the effect that these 
changes have on calculated defect formation energies. The move from pure electron gas 
to empiricised potentials increases the V;I?, formation energies by over 3.5 eV, both 
before and after relaxation. On the other hand, very little change occurs for the three 
substitutional defects on changing from pure electron gas to empirical and empiricised 
potentials. Thus, the empiricising process maintains the same consistency between the 
empirical reference and empiricised potential as was enjoyed by the original electron 
potentials. 
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